Fabrication of Electromagnetically-Driven Tilted Microcoil on Polyimide Capillary Surface for Potential Single-Fiber Endoscope Scanner Application

نویسندگان

  • Zhuoqing Yang
  • Jianhao Shi
  • Bin Sun
  • Jinyuan Yao
  • Guifu Ding
  • Renshi Sawada
چکیده

The design and fabrication of a Micro-electromechanical Systems (MEMS)-based tilted microcoil on a polyimide capillary are reported in this paper, proposed for an electromagnetically-driven single-fiber endoscope scanner application. The parameters of the tilted microcoil were optimized by simulation. It is proved that the largest driving force could be achieved when the tilt-angle, the pitch and the coil turns of the designed microcoil were 60◦, 80 μm and 20, respectively. The modal simulation of the designed fiber scanner was carried out. The prototypes of the tilted microcoils were fabricated on the surface of polyimide capillary with 1 mm-diameter using our developed cylindrical projection lithography system. The dimensions of the two tilted microcoils were as follows: one was tilt-angle 45◦, line width 10 ± 0.2 μm, coil pitch 78.5 ± 0.5 μm, and the other was tilt-angle 60◦, line width 10 ± 0.2 μm, coil pitch 81.5 ± 0.5 μm. Finally, a direct mask-less electroplating process was employed to fabricate the copper microcoil with 15 μm thickness on the gold (Au) seed-layer, and the corresponding line width was expanded to 40 μm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Capillary optical fiber – design, fabrication, characterization and application

The paper presents a modification of capillary optical fibers fabrication method from an assembled glass preform. A change of dimensional proportions in the capillary optical fiber drawn from a single preform is allowed on-line via the control of overpressure and thermal conditions in the outflow meniscus which essentially lowers the manufacturing costs. These conditions are among the solutions...

متن کامل

Characterization of Flexible RF Microcoil Dedicated to Surface Mri

In Magnetic Resonance Imaging (MRI), to achieve sufficient Signal to Noise Ratio (SNR), the electrical performance of the RF coil is critical. We developed a device (microcoil) based on the original concept of monolithic resonator. This paper presents the used fabrication process based on micromoulding. The dielectric substrates are flexible thin films of polymer, which allow the microcoil to b...

متن کامل

Fabrication of microcoil/microsprings for novel chemical and biological sensing

This paper reports the fabrication of a novel microsensor structure using inductively coupled plasma source (ICP) dry etching process. The novel sensor is based on a SiO2/Si/SU-8 trilayered microcoil/microspring structure. The diameter of the microcoil was approximately 600 m. The ICP process and SU-8 exposing time are discussed. The SiO2 layer can be conveniently modified according to typical ...

متن کامل

Fabrication and Characterization of the Fiber Optical Taper for a Surface Plasmon Resonance Sensor

For a fiber optical surface plasmon resonance (SPR) sensor a short part of its cladding should be removed to coat a thin layer of a metal. Usually this is problematic when an optical fiber with small core diameter is used. In this paper, a new method using µliter droplet of the HF acid for short fiber optical taper fabrication is reported. Using this method in a multi-mode optical fiber w...

متن کامل

Designing and Fabrication of a New Radiofrequency Planar microcoil for mini-Nuclear Magnetic Resonance

Introduction Radiofrequency planar microcoils are used to increase the resolution of magnetic resonance images of small samples. In this study, we aimed to design and fabricate a spiral planar microcoil constructed on a double-sided printed circuit board (PCB). It has four rings with an internal diameter of 241 microns tuned and matched at 63.8 MHz. Materials and Methods To achieve the maximum ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018